If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+826x+11028=0
a = 1; b = 826; c = +11028;
Δ = b2-4ac
Δ = 8262-4·1·11028
Δ = 638164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{638164}=\sqrt{4*159541}=\sqrt{4}*\sqrt{159541}=2\sqrt{159541}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(826)-2\sqrt{159541}}{2*1}=\frac{-826-2\sqrt{159541}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(826)+2\sqrt{159541}}{2*1}=\frac{-826+2\sqrt{159541}}{2} $
| 5(y+6)-7y=12 | | -6(x-2)=4(3-6x)=-36 | | 28=35+21m/5 | | -5x-2=8x+15-14x | | x-70=-7x-6 | | 21-x=8x+3 | | 24/120=9/n | | 6.4=5n+39.9/25 | | 7x-135/2=2x | | 3x-0.01x^2-200=0 | | 15.8x=18.17 | | 7+4x-5=-5x+14 | | 4+n-1/5=3n+8/4 | | y+10=2y+6.7 | | 2x+42+x-14+x=x | | n/8-n/2=18 | | 4(2y-60+3=11 | | 1+7u=-u+25 | | -82+w=-9w-12 | | 14.5+5=-5x-6(-3x+15)+5 | | -10s+18=9s+56 | | -10u=5u-30 | | -7(1+a)-8a=8 | | 7-3s+10s=42 | | -64=6v+6v-16 | | -3a-36=3a | | 4=-2(c-6)+16 | | -27=-8u+3u+18 | | -5d+9d=-12 | | 4(3)^(x-1)-3^(2x)=27 | | 6=2(q-3) | | 3c+2c=-40 |